辛几何&李代数

阶级与秩序

阶级与秩序

圣谛尚不为,何阶级之有! &&青原行思禅师 Order without liberty and liberty without order are equally destructive. &&Theodore Roosevelt   1 引子 笔者来自穷乡僻壤,因此家乡话里就保有一些化石级的文化... 阅读全文

 

圣谛尚不为,何阶级之有!

——青原行思禅师

Order without liberty and liberty without order are equally destructive.

——Theodore Roosevelt

  1 引子

笔者来自穷乡僻壤,因此家乡话里就保有一些化石级的文化痕迹。旧时待客,主人会根据客人的阶级层次决定接待规格,俗谓看人下菜碟。对于拥有这种自觉的人,文化点的表述是具有较高的阶级觉悟,俺们老家的土话就说这人“长就一对阶级眼”,属于天赋异禀的一类。阶级繁杂且森严,是中国文化的精髓。历史上不仅是对官员,就连嫔妃、奴才、太监和教授都分成三六九等,都有系统科学的标识和具体而微的待遇安排。比如,汉朝是个有文化的朝代,帝妇初分为皇后、夫人、美人、良人、八子、七子、长使、少使八等,后又引入婕妤、妌娥、容华、充依、五官、顺常和无涓(共和、娱灵、保林、良使和夜者)共十五等。清朝帝妇则分为皇后、皇贵妃、贵妃、妃、嫔、贵人、常在和答应,从命名上就能看到文化的缺乏。不同阶级之间,有递补、提拔、贬谪与自甘堕落,但平时一般各以本分,这正应了原子中电子的隧穿、受激向上跃迁、受激向下跃迁和自发向下跃迁,以及大多时间在稳定状态上的无所事事。

用来区分人或物之不同等级的汉语词包括阶-级、秩-序、品(秩)、次(幂)等词,用这些词加以翻译的英文词有level,order,degree,grade,rank,等等。这些词在数学物理中频繁出现,且意义多有不同甚至混淆, 中西文皆然。中文的阶级,其中的阶(堦)见于台阶,庭阶寂寂,是实体,而级,见于拾(shè) 级而上,由计数(enumeration)而来,有抽象的内容。容易理解,台阶是一种实用的、但也被故意符号化了的存在,许多建筑在面前都筑起多层次的台阶,陡然而出威严(图1)。阶-级、秩-序这种得自自然和日常生活的词必然散布于数学物理的表述,弄不清level,order,degree,grade,rank 这些词的用法,看数学物理和看宫斗剧一样有点稀里糊涂。学物理者,将一双阶级眼用在这里,正得其宜也。

   2 Level

谈到汉译为阶级的词,容易想到的一个便是level, 见于energy level (能级),但这可能是误解。英语的level,来自拉丁语的libra,与平、衡有关。水平的线或者面,即为level,如sea level (海平面),on a level line (水平线上)。牛顿流体在重力场下的静止状态,其表面的法向应该是重力的方向,此即waterseeks its level 之意。利用这个事实,可以制作水平仪(level,见图2),这是工程中必不可少的工具。Level 不是级,而是阶、阶之面。在日常用法中,level 不仅表示层面,还暗含平衡之意, 如high-leveltalk,不仅是说会谈的层次高,而且是对等的。Level 还有equally advanced in development & even or uniform in some characters (等间距的、均匀分布的),因此level暗含“equal in importance, rank, degree, etc.”的意思,这也可能是我们愿意拿级来翻译level 的原因。但是,把energy level 翻译成能级还好,习惯性地把atomic level,sub-levels 中的level也翻译成“ 能级”这就麻烦了,它掩盖了轨道(也许就是个数学的函数)自身的排列问题,这里的level强调的也许只是轨道可分辨这个事实。在象levels of consciousness,levels of difficulty 这样的概念中,谈论的都是抽象概念的分层次,没有定量的成分。许多时候,把level 译成层次、层面也许是更合适的,哪怕是energy level。比如加速器的energylevel,如在例句LHC experiments run at the highest energy level 中,就应该译成“能量水平”, 目前欧洲大型强子对撞机就运行在13 TeV 的能量水平上。此外,象the macroscopic level of quantum mechanics一文,显然讨论的是量子力学的宏观层次。

  3 Degree

Degree, 来自拉丁语动词degradare,就是英文的degrade,是一串台阶(steps or stages)的意思,注意它更多强调了降序的排列,这一点从a cousin in the second degree (二度表亲,拥有同一个太爷爷、太奶奶辈分的前辈)一词中很容易看出来。Degree 和grade (gradus) 意义相同,两者可连用。我们在学校里学习的难易程度也是分级的(同学,你物理是第几grade 的?)。如果是沿着不易觉察的台阶或者刻度一点一点向前(向上)推进,这就是一个gradual(逐渐的)过程。达到一定程度就能graduate (毕业、爬到头了), 就可以receive a degree (获得一个学位,拿到一个刻度标记)了。常用的摄氏温标(temperature scale)的量度名称为degree Celsius (摄氏度),也称degree centrigrade (100 刻度制),后一词透露了其是如何被定义的。将标准大气压(维也纳夏季的气压)下冰—水混合物的温度定为0 ℃,把水的沸点定为100 ℃。利用稀薄空气在等压条件下体积随温度线性变换的假设,可以根据稀薄气体体积相较于0 ℃下的增量给0 ℃到100 ℃间的任意温度赋值。这就是摄氏温标的定义。注意,对于稀薄空气,在0 ℃到100 ℃之间温度每增加1 ℃,体积增加约1/267。明白了这一点,也就明白了作为对摄氏温标之拓展的绝对温标,其唯一的定标点,水的三相点,为什么会定为273.16 K了。一般中文教科书中论及摄氏温标,只含含糊糊地来一句“标准大气压下冰水混合物的温度定为0 ℃,水的沸点定为100 ℃,此为摄氏温标”,显然漏掉了太多的信息。编书者当年囿于条件不能知道细节可以理解,但根本没注意到定义的不完整就让人不能理解了。早期的来自物质体积变化的、直观的一排刻度,那真是degree,如今的电子式的温度计,显示的就是“一个”数值,则需要符号℃,°F 的提醒才会想起degree来(图3)。

有可视标度的是真degree,纯数字的就靠外加符号的提醒了

Degree 可用作对一般程度的或者干脆就是直观存在的度量。一个圆, 其上可以划上刻度, 分为360°,那是对每年天数的取整,不具有绝对的意义。在反射光的degree of polarization(偏振度)概念中,degree 反映的是程度,其取值在0到100%之间。Degree 或者grade 还被用来衡量抽象概念的程度,如马克思的《政治经济学批判》一书中有句云:“Der Tauschwert der Waren,so als allgemeine Äquivalenz und zugleich als Grad dieser Äquivalenz in einer spezifischen Ware,oder in einer einzigen Gleichung der Waren mit einer spezifischen Ware ausgedrückt,ist Preis (商品的交换价值,作为一般等价以及在某特定商品中此等价的程度值,或者表达为该商品同某一特定商品的等值关系,是价格)”。在degrees of degeneracy(简并度),degrees of freedom (自由度)等概念中,degree 是个正整数。简并度,即对应同一能量之不同状态的数目,在德语中简并度的说法为Entartungsgrad,可见degree 就是grade。自由度就是描述体系所需的独立变量数。仔细体会这个定义,“ 描述体系所需的独立变量数”,则自由度的多少取决于如何描述。描述一个粒子在三维空间中的位置需要3个变量,则描述由N(N≥3)个粒子组成的刚体的构型就需要6个独立变量,或者说刚体运动的自由度为6。在热力学—统计力学中有所谓的能量均分定理,谓每一个自由度对比热的贡献都是一个R/2,R是气体普适常数。如果不深入了解这个能量均分定理成立的条件,许多人都难以理解水分子H2O何以有18个自由度,而水(蒸汽)的比热也一直是温度的函数。就比热问题而言,自由度是能量表示涉及的自由度,这包括动能涉及的动量自由度和势能涉及的位置自由度。有趣的是,某些晶体的晶格可看作是两套或多套亚格子(sublattice)套构而成的,这也可以看成是一类自由度。炭单层的六角晶格是由两套三角格子构成的,其中电子的波函数可以比照电子自旋写成两分量的形式。

  Degree 作为函数或者方程的指标, 汉译为次( 次幂) 或者阶。比如 , 函 数

  阶级与秩序

  是? th-degree Legendre polynomial,汉译? - 阶勒让德多项式。The degree of a monomial,汉译单项式的次幂,是变量指数的和,比如项x2y3的degree 是5。单变量的代数方程(univariate polynomial equation),以变量的最高次幂命名,简称为一元二次方程(a second degree monic polynomial equation)、三次(third degree)方程等等。当然了,这类方程有专门的、简单的称谓quadratic,cubic,quartic,quintic,sextic polynomial equations,分别为二次、三次、四次、五次和六次代数方程。五次以上的多项式方程不存在代数解(unsolvable by radicals),对这个问题的理解带来了群论的诞生。群论对物理学的影响,怎样高度评价都不为过。物理学最深刻的学问,所谓的the fearful symmetry(了不起的对称性),来自对一元代数方程的摆弄。对一元多项式解的探索,是一场惊心动魄的天才的游戏。与解方程有关的还有topological degree theory。如果方程有某个容易得到的解,degree theory 可用来证明其它非平凡解的存在。Degree theory看起来和fixed-point theory(固定点理论), knot theory( 纽结理论) 有关,具体内容笔者不懂,此处不论。

  4 Order

Order 简直就是一个充斥数学和物理学领域的一个词汇。Order 的西语本意也是“放成一溜儿(straightrow,regular series)”的意思,可作为名字和动词使用。Order frequently refers to orderliness, a desire for organization。存在总是表现出某种意义上的order,这让认识世界成为可能。Objects should be ordered in order to bring in some order and clarity(为了有序和明晰,应该为对象排序),这几乎成了科学家的共识。排序、分类是研究的前期准备。

Order 是个用得太多的词,可以想见它的汉译会花样繁多。Order 在物理语境中一般被译成序,如orderparameter (序参量),topological order(拓扑序),off-diagonal long-rangeorder (非对角长程有序),等等。过去分词形式ordered 用作形容词,如晶体就是ordered structure (有序结构)。Order 的对立面是disorder,formless,最无序的存在是chaos (混沌),指the disorder of formless matter and infinite space (由无形的物质和无限的空间一起构成的无序)。混沌被当作有序之宇宙出现之前的状态,也就是说当前的有序状态是自完全无序中发生的,order out of chaos,哈,多哲学。

Order 出现的语境,更多的还是和排序有关,比如lexicographical ordering (字典编纂采用的排序),electrons are always added in order of increasing energy(电子按照能量递增的顺序被加进来),the order of differentiation or integration( 微分、积分的次序),等。微分、积分以及乘积的顺序有时候没关系(immaterial),有时候关系重大,结果依赖于顺序的就意味着别样的数学结构和物理,比如非交换代数或者物理里的非对易算符。有时候,有些源自order 的词从我们的角度来看,会以为排序的意思不明显,比如coordinates和ordinate 就给译成了坐标和纵坐标(vertical ordinate),但请记住这里的关键是这些数值具有排序的含义在里边。有些地方把笛卡尔坐标系的x-轴称为horizontal ordinate(水平坐标),但其实有时候x-轴的对象不是可排序的量,如职工工资分布图,工资是可排序的,职工则无所谓序。当我们把y-轴理解为ordinate时x-轴有专有名词abscissa,是个标记(锯痕?)而已。此外,如lineardimensions are of the order of L,汉译为线性尺度在L的量级,字面上可看到的意思是若排列的话,该尺度应该可与L 等量齐观的。Order of magnitude,量之大小在序列中的位置,汉译干脆就是数量级。

数字的用法分为ordinal numbers( 序数) 和cardinal number ( 基数),前者明显与order有关,而后者也不免和order 有关。一个集合的元素数目,是集合的cardinality (集合的势),而群的元素数,当然也是cardinality, 又被称为order of group,汉译“群阶”。与此同时,群元素g 的period (周期),即使得gm=1 成立的最小整数m,也称为该群元素的order。群阶和元素的阶反映了群的内在结构。大致说来,一个群,其群阶的因子分解越复杂,这个群的结构就越复杂。不仅群和群元素有order 的概念,群的特征标(character)也有order的说法。

Order 在许多场合下有排序的意思,与其连用的数词应是序数词,如second-order differential equation(二阶微分方程),third-order recurring sequences (二阶递归序列),first-order approximation (一阶近似),等等。物理学的方程被限制在(第)二阶(偏)微分方程的层面,学会了解二阶(偏)微分方程,一个纯数学家也许比许多物理学家更象物理学家。量子力学以及后继的发展被有些人频繁以革命誉之,属不通之论,其governing equations 模样可以变得复杂可怕,但属于二阶微分方程却是不变的。

  5 Rank

中文的秩,序也,次也,可连用为秩序、秩次(官阶的高下),还有秩叙(次序)、秩然(秩序井然)、秩如等词。秩既然用来表示官阶的高下,相应的标识就有秩服(区别官阶的服饰)、秩俸(分级别的俸禄)等委婉语。秩被用来翻译英文数理概念中的rank,日常表述的rank,如military rank (军阶)还是用阶级加以翻译。中国古代的官员有华丽花哨的秩服,今天各国军队的military rank 则用华丽花哨的徽章(insignia)加以标识。

Rank,与range,arrange 同源,意为to arrange in order,特别是排成行。作为及物和非及物动词用,rank 一般是排序的意思,如to rank third on a list ( 位列第三), qualitative ranking of various ions toward their ability to precipitate a mixture of hen egg white proteins (根据使得鸡蛋白沉淀的能力把离子定性地加以排序), Alfred Nobel 在设立诺贝尔奖时将物理学排在第一位(ranked physics as the first one), 等等。Rank 作为名词表示次序,汉语的翻译比较随意, 比如people from allranks of life (各阶层人民),a poet of the first rank ( 一流诗人), 等等。Rank 作为排序的意思强调是排成行,国际象棋棋盘上空格的行与列,英文用的即是rank 与file;相应地,对于矩阵的行与列,英文用的是row与column。

Rank 作为科学概念我们知道有rank of a matrix 矩阵的秩的说法。Rank 是矩阵的一个基本特征。把矩阵的行(列)看成一组矢量,这组矢量中线性无关的矢量的数量即是所谓的rank,也即行(列)矢量所张空间的维度。对于一个矩阵,行和列具有相同的秩,也就是矩阵的秩。考虑到矩阵同线性方程组和线性变换(算符)相联系,因此矩阵A 的秩是线性方程组A·x=c 非简并性的度量,也是线性变换y=A·x 之像空间的维度。

在物理上,我们知道能量是标量(scalar),动量、位置是矢量(vector),而角动量L= r? ×p?是贋矢量等等,这些可以用张量(tensor)的语言统一处理。张量是描述张量之间线性关系的几何对象(有点循环定义的味道哈),张量的rank (也叫order或者degree)就是用来表示张量的数列的维度,也即所需指标的个数。由此可知,能量,动量(位置)和角动量分别是rank-0,rank-1 和rank-2张量。针对某个标量(质量,电荷)的空间分布定义的四极矩张量, Q=∫Ωρ(3rirj - |r|2δij)d3r , 就是无迹的rank-2 张量。电位移D (矢量)对应力张量σ(rank-2张量)的响应,或者应变张量ε(rank-2 张量)对电场E (矢量)的响应,相应的系数就是rank-3张量。

涉及线性行为的代数、变换和算符等概念都会有rank 这个特征,因此有(李)代数的秩,(不可约)张量算符的秩等说法。Module (模式)概念也有秩的说法,比如rank 2 的自由Z-module 不过是Ok = Z ?ωZ 的一种装酷的说法而已,其中ω ∈Ok ,Ok 为一代数整数集合。对椭圆曲线y2=x3+Ax+B 也有rank 这么一个量,比如椭圆曲线y2=x3-2 和y2=x3-4, 其Mordell—Weil rank 就是1。这种秩有什么意思,怎么计算,笔者不懂。

收起全文

辛几何&李代数

梅森素数的分布式网络计算

梅森素数的分布式网络计算

生成一个列表(Forming a list) 很容易证明,如果 2P-1 是素数,则 P 也一定是素数。因此,搜索梅森素数的第一步就是生成一个用于测试的素数指数列表。 试验分解因子(Trial Factoring)下一步是通过寻找小因子来排除一些指数。有一个非常高效的算法判断一个数是否能整除 2P-1。例如,让我们看一下 47 是否能够整除 22... 阅读全文

生成一个列表(Forming a list)

很容易证明,如果 2P-1 是素数,则 P 也一定是素数。因此,搜索梅森素数的第一步就是生成一个用于测试的素数指数列表。

 

试验分解因子(Trial Factoring)

下一步是通过寻找小因子来排除一些指数。有一个非常高效的算法判断一个数是否能整除 2P-1。例如,让我们看一下 47 是否能够整除 223-1。把指数 23 转换成二进制数,我们得到 10111。从 1 开始,重复以下步骤:平方,删除指数的最左边二进位,如果该位是 1,则将平方后得到的值乘以 2,然后计算其除以 47 后的余数。

平方删除最左边二进位如果需要就乘以 2除以47的余数
1*1 = 1101111*2 = 22
2*2 = 40111no4
4*4 = 1611116*2 = 3232
32*32 = 1024111024*2 = 204827
27*27 = 7291 729*2 = 14581

因此,223 = 1 mod 47。两边同时减 1,223-1 = 0 mod 47。因此我们知道 47 是一个因子,从而 223-1 不是素数。

可以证明梅森数有一个非常好的性质:2P-1 的任何因子 q 必定是 2kP+1 的形式,并且 q 除以 8 的余数一定是 1 或者 7。最后,一个高效的程序可以利用任何可能的因子 q 必须是素数这一事实。

GIMPS 程序的分解因子代码使用修正的厄拉托森斯(Eratosthenes)筛法,利用一个二进位表示一个可能的 2kP+1 形式的因子。这个筛排除能够被大约 40,000 以下的素数整除的任何可能的因子。同样,表示除以 8 的余数是 3 或者 5 的可能的因子的二进位被清除。这个过程排除大约百分之九十五的可能的因子。剩下的可能的因子使用上面描述的高效的算法进行测试。

现在唯一的问题是要试验分解多少因子?答案取决于三个因素:分解因子的代价、发现一个因子的概率和素性测试的代价。我们使用以下公式:

分解因子的代价 < 发现因子的概率 * 2 * 素性测试的代价

也就是说,分解因子所花费的时间必须小于期望被节省的时间。如果能够发现一个因子,我们就能够避免进行首次素性测试和复查。

根据以前分解因子的数据,我们知道发现一个 2X 到 2X+1 之间的因子的概率大约是 1/X。本程序进行素性测试和分解因子所需的时间已经被计算出来。目前,本程序试图分解因子到:

指数上限分解因子到
3,960,000260
5,160,000261
6,515,000262
8,250,000263
13,380,000264
17,850,000265
21,590,000266
28,130,000267
35,100,000268
44,150,000269
57,020,000270
71,000,000271
79,300,000272

 

用 P-1 方法分解因子(P-1 Factoring)

还有另外一个方法可被 GIMPS 程序用来搜索因子,因而避免进行素性测试的花费。这个方法叫做波拉德(Pollard)(P-1)方法。如果q 是某数的一个因子,并且 q-1 是高度复合的(也就是说 q-1 只有小因子),P-1 方法就可以找到因子 q

该方法用于梅森数时甚至更高效。回忆一下,因子 q 只能是 2kP+1 的形式。只要 k 是高度复合时,就很容易修改 P-1 方法去搜索因子 q

P-1 方法是十分简单的。在第一阶段我们挑选一个边界 B1。只要 k 的所有因子都小于 B1 (我们称 k 为 B1-平滑 (B1-smooth) ),P-1 方法就能找到因子 q。我们首先计算 E = (比 B1 小的所有素数的乘积)。然后计算 x = 3E*2*P。最后,检查 x-1 和 2P-1 的最大公约数,就可以知道是否找到一个因子。

使用第二个边界 B2,我们可以改进波拉德算法,达到第二阶段。如果 k 在 B1 到 B2 之间刚好有一个因子,而其它因子都小于 B1,我们就能够在第二阶段找到因子 q。这个阶段要使用大量的内存。

GIMPS 程序使用该方法去寻找一些给人印象深刻的因子。例如:

22,944,999-1 能够被 314,584,703,073,057,080,643,101,377 整除。
314,584,703,073,057,080,643,101,377 等于 2 * 53,409,984,701,702,289,312 * 2,944,999+1。
值 k,53,409,984,701,702,289,312,是非常平滑的:
53,409,984,701,702,289,312 = 25 * 3 * 19 * 947 * 7,187 * 62,297 * 69,061

GIMPS 如何智能地选择 B1 和 B2 呢?我们使用试验分解因子方法中的公式的变种。我们必须使下式取得最大值:

发现因子的概率 * 2 * 素性测试的代价 - 分解因子的代价

发现因子的概率和分解因子的代价都依赖于 B1 和 B2 的取值。当 k 是 B1-平滑 或者 k 是 B1-平滑 并且在 B1 到 B2 之间刚好有一个因子时,迪克曼(Dickman)函数(参见高德纳(Knuth)《计算机程序设计艺术》第二卷(译注:中文版第347页))用来确定发现因子的概率。本程序尝试许多 B1 的值,如果有足够的可用内存的话也尝试一些 B2 的值,用以确定使以上公式取得最大值的 B1 和 B2 的值。

 

卢卡斯-莱默测试(Lucas-Lehmer testing)

卢卡斯-莱默素性测试是非常简单的:如果 P > 2, 2P-1 是素数当且仅当 SP-2 = 0,其中,S0 = 4,SN = (SN-12 - 2) mod (2P-1)。例如,证明 27 - 1 是素数的过程如下:

S0 = 4
S1 = (4 * 4 - 2) mod 127 = 14
S2 = (14 * 14 - 2) mod 127 = 67
S3 = (67 * 67 - 2) mod 127 = 42
S4 = (42 * 42 - 2) mod 127 = 111
S5 = (111 * 111 - 2) mod 127 = 0

为了高效地实现卢卡斯-莱默测试,我们必须寻找对巨大的数进行平方及对 2P-1 取余的快速方法。自二十世纪六十年代后期以来,对巨大的数进行平方的最快速的算法是:把巨大的数分裂成小片形成一个大数组,然后执行快速傅里叶变换(FFT),逐项平方,然后再进行快速傅里叶逆变换(IFFT)。参见克努特的《计算机程序设计艺术》第二卷“乘法能有多快?”一节(译注:中文版第267页)。1994年1月,由Crandall)和巴里·费金(Barry Fagin) 合著的题为“离散加权变换和大整数算术”的计算数学文章,引入了无理底数 FFT 的概念。这个改进使得计算平方的速度提高两倍以上,允许使用较小的 FFT,并且这一过程中自动执行了对 2P-1 取余步骤。虽然由于英特尔公司的奔腾处理器体系结构的原因,GIMPS 程序使用浮点 FFT,但彼得·蒙哥马利(Peter Montgomery)给出的一个纯整数加权变换的方法也能够被使用。

正如上一段所提到的,GIMPS 使用汇编语言编写的浮点 FFT 算法,充分利用流水线和高速缓存。因为浮点运算是不精确的,在每次迭代后浮点值舍入到整数。本来该有的整数结果和程序计算出来的浮点结果之间的差异叫做“卷折误差”。如果卷折误差超过 0.5 则舍入将产生不正确的结果 - 这意味着必须使用更大的 FFT。GIMPS 程序的错误检查确保最大卷折误差不超过 0.4。不幸地,这种错误检查的代价相当高,以致于不能在每次平方后都进行检查。存在另外一种代价很低的错误检查。FFT 平方的一个性质是:

(输入 FFT 值的和)2 = (输出 IFFT 值的和)

由于我们使用浮点数,我们必须将上式中的“等于”改为“约等于”。如果上式中两个值实质上不等,将给出一个在 readme.txt 文件中描述过的 SUMINP != SUMOUT 错误。如果输入 FFT 值的和是一个非法的浮点数(例如无穷大),将给出一个 ILLEGAL SUMOUT 错误。不幸地,这种错误检查无法发现我们将在下一节中描述的所有错误。

卢卡斯-莱默测试发现一个新的梅森素数的概率有多大?一个简单的估计是再次利用发现一个 2X 到 2X+1 之间的因子的概率大约是 1/X 的事实。例如,你已经使用试验分解因子证明 210,000,139-1 没有比 264 小的因子,那么它是素数的概率是:没有 65 二进位因子的概率 * 没有 66 二进位因子的概率 * ... * 没有 5,000,070 二进位因子的概率,即:

梅森素数的分布式网络计算

化简后得到:64 / 5,000,070,或者1 / 78,126。这个简单的估计不是很准确,它给出的公式是:(试验分解因子到多大的指数) / (指数/2)。进一步的工作表明更精确公式是:(试验分解因子到多大的指数-1) / (指数 * 欧拉常数(0.577...))。在上例中,是1 / 91,623。这个更精确的公式是未经证明的。

 

复查(Double-checking)

为了核实首次的卢卡斯-莱默素性测试没有出错,GIMPS 程序运行第二次素性测试。在每次测试期间,最终的 SP-2 的最低 64 二进位,叫做余数,被打印出来。如果它们相同,GIMPS 宣称该指数已经被复查。如果它们不相同,素性测试被再次运行直到最后出现匹配。和首次测试相匹配的复查,通常是在首次测试之后大约两年进行。GIMPS 分配复查给较慢的计算机,因为该指数比正在进行的首次测试的指数小,以便较慢的计算机能够在合理的时间内完成其工作任务。

GIMPS 复查采取进一步的防护措施以避免程序设计错误。在开始卢卡斯-莱默测试之前,S0 的值被左移随机的二进位。每次平方刚好加倍我们左移的 S 值。注意对 2P-1 取余的步骤仅是简单地将第 P 位以上的位移到最低有效位,因此没有信息丢失。为什么我们要自找麻烦呢?因为如果计算 FFT 的程序代码有错误,对 S 值的随机的移位确保第二次素性测试中的 FFT 算法处理一个和首次素性测试完全不同的值。一个程序设计错误几乎不可能产生同样的最终 64 二进位余数。

历史上,卢卡斯-莱默测试运行期间没有报告严重错误时,结果的错误率大致是 1.5%。卢卡斯-莱默测试产生的错误被报告的比率大约是 50%。作为记录,我没有把“ILLEGAL SUMOUT”作为严重错误统计。

收起全文

ibanana

Maredo餐厅柏林旗舰店(16张)

辛几何&李代数

在数学一堆栈或2-sheaf是的,大致说来,一个捆以价值范畴而不是集。栈是用来形式化的一些主要结构血统论,并构建精细模栈时精细的模空间不存在。血统理论关注的是普遍的情况下,几何对象(如向量丛打开(放)拓扑空间)可以被&粘在一起&时,同构(在一个兼容的方式)时,限制在一个空间的一个开覆盖集的十字路口。在更一般的设置的限制与一般的回调所取代,并纤维类形成正确的框... 阅读全文

数学堆栈2-sheaf是的,大致说来,一个捆以价值范畴而不是集。栈是用来形式化的一些主要结构血统论,并构建精细模栈时精细的模空间不存在。

血统理论关注的是普遍的情况下,几何对象(如向量丛打开(放)拓扑空间)可以被“粘在一起”时,同构(在一个兼容的方式)时,限制在一个空间的一个开覆盖集的十字路口。在更一般的设置的限制与一般的回调所取代,并纤维类形成正确的框架来讨论这种粘合的可能性。一堆的直观的意义就在于它是一个纤维范畴,“所有可能的扣工作”。对扣的规范需要定义一个覆盖方面,可以考虑扣。原来,描述这些覆盖物的通用语言是一个Grothendieck拓扑。因此,堆栈是正式作为纤维类的另一个基地类,在基地有一个Grothendieck拓扑和纤维类满足一些公理,确保相对于Grothendieck拓扑和某些扣的存在唯一性。

栈是代数栈的底层结构(也被称为阿廷栈)和涅–芒福德堆栈,从而推广方案和代数空间这是特别有用的研究模空间。有包裹体:方案⊆代数空间⊆涅–芒福德栈⊆代数栈⊆栈。

(2003)Edidin和(2001)fantechi简要介绍账户栈,Góó(2001),奥尔森(2007)和(2005)vistoli给出更详细的介绍,并洛蒙和莫雷贝利(2000)介绍了更先进的理论。

 

 

 

动机和历史

洛杉矶结论检疫àlaquelle Je suis到达éDè的维护,这是阙chaque FOIS阙恩的Vertu德MES的暴击èRES,一变éTéde模块(或译ôT,联合国学校é马德模块)倒拉分类DES的变化(GLOBALES,欧无穷ésimales)德有结构(变éTé的并发症èTES非按每一个èRES,纤维é的vectoriels,等)的对立malgr东北peut,éde女佣假说èSES的陈词滥调,propreté,等非singularitééventuellement,LA存在EN EST seulement l'existence d'automorphismes de la结构魁EMPê车拉技术德迪桑特de行军。

Grothendieck的信塞尔,11月5日1959。

栈的概念起源于定义有效数据在下降(1959)群。在1959封信塞尔,Grothendieck指出,构建良好的模空间的根本障碍是自同构的存在。栈的主要动机是,如果对一些问题的模空间不存在由于自同构的存在,它可能仍然可以构建一个弹性模量堆栈。

芒福德(1965)研究了Picard群椭圆曲线模栈在栈,定义了。栈是最初由吉罗 (一千九百六十六,一千九百七十一),和“堆”的介绍德利涅&芒福德(1969)对原法国“冠军”意义的“场”。本文还介绍了涅–芒福德栈,他们称之为代数栈,虽然“代数栈”现在通常指的是更一般的阿廷栈介绍了艺术 (一千九百七十四)。

当定义商方案组的行动,为商是一个仍然满足理想的商性能的方案通常是不可能的。例如,如果一个点有非平凡的稳定剂,然后范畴的商将不存在的计划。

以同样的方式,模空间曲线,向量丛,或其他几何对象往往是最好的定义为替代方案栈。模空间的结构常常是首先构造一个更大的空间参数化对象的问题,然后quotienting的一组动作占已在数目上超过自同构的对象。

定义

一类C与一个函子范畴C被称为纤维类C如果任何态射FXY进入C与任何对象YC图像Y,有一个回调FXYYF。这意味着任何态射GZY图像G=FH可以分解为G=FH一个独特的态射HZX图像H。元素X=F*Y被称为回调Y沿F和是唯一典型的同构。

类别C被称为叠前在一个范畴CGrothendieck拓扑如果是纤维在C对于任何对象UC和对象XYC图像U从对象上,函子U集以FvU坎(F*XF*Y)是一个层。这个术语是不一致的:prestacks滑轮的术语是分离而不是presheaves presheaves类似物。

类别C被称为堆栈在范畴C与Grothendieck拓扑如果是叠前结束C任何下降的数据是有效的。一下降的数据大概包括覆盖对象vC一个家庭vI,元素XI在纤维上vI,和态射F之间的限制XIXJvij=vI×UvJ满足相容性条件F王下=FKJF。下降的数据称为有效如果元素XI基本上是一个元素的回调X图像U

一堆被称为堆栈在胚(2,1)-层如果是纤维在胚,这意味着它的纤维(逆图像对象C)是胚。一些作者使用“栈”是指在群堆的更严格的概念。

一个代数栈阿廷栈在群栈X在层如图的对角线X是表示和存在光滑满射从(相关的堆栈)一个X射方案Y栈 X栈是可表示的如果,每射S 栈 X从(相关的堆栈)方案的X,纤维制品 Y ×X S是同构的(相关的堆栈)代数空间。这个纤维制品栈是使用通常的定义通用性,和改变图去要求他们2-commute要求。

涅–芒福德栈是一个代数栈X这样就从一个方案的é故事满射X。大致说来,–涅芒福德栈可以被认为是代数栈的对象没有无穷小的自同构。

实例

  • 如果一个栈的纤维集(意义范畴的态射的身份映射)然后堆基本上是相同的一套。这表明一个堆栈是一种泛化的一捆,以价值观而不是任意类别设置。
  • 准紧对角的任何方案都是一个代数堆栈(或者更准确地说是一个)。
  • 类别向量丛V→是叠加在拓扑空间范畴。从V→态射T由对W的连续映射TV从对以W(线性纤维)这样明显的广场上。这是一个纤维范畴的条件是因为人可以把向量丛的回调在拓扑空间的连续映射,这一下降的数据是有效的条件是因为我们可以构造一个向量丛的一个空间上的向量丛的粘在一起的一个开放的封面元素。
  • 拟凝聚层方案堆栈(相对于fpqc拓扑弱拓扑)
  • 在基础方案的仿射方案堆栈(再次对fpqc拓扑或微弱)
  • 芒福德(1965)研究了模栈M1,1椭圆曲线,发现其Picard群是循环12阶。椭圆曲线上的复数相应的栈是一个类似的商上半平面由的行动模块组
  • 这个代数曲线模空间MG定义为一个泛家族的光滑曲线的属 G不存在一个代数簇,尤其是有曲线承认非平凡自同构。但是有一个模栈MG这是一个很好的为不存在的精细模空间的光滑属替代G曲线。通常有一个模栈MG,NG曲线N标记点。总的来说这是一个代数叠加,是–涅芒福德栈G≥2或G= 1,N> 0G= 0,N≥3(换句话说,当曲线的自同构群是有限的)。这种弹性模量堆栈组成的稳定曲线模栈完成(对于给定的GN以上规格是正确的)Z。例如,M是bpgl分类堆栈(2)的一般射影线性群。(有一个微妙的定义M,作为一个使用代数空间而不是方案施工。)
  • 任何GERBE在群栈;例如琐碎gerbe,分配给每个方案的主G在方案捆绑,一些组G
  • 如果Y是一个方案G是一个光滑组方案的作用Y,然后有一个商代数栈 Y/G一个方案,以T这群胚G-旋量超过TG等变映射Y。一个特殊的情况下,这个时候Y是一个点给出分类堆栈BG对一个光滑组方案G
  • 如果一个是拟凝聚层代数在代数栈X在一个方案,然后有一堆的规格()推广建设的频谱规范()一交换环。一个对象的规格()由下式给出方案对象的TXXT),和一个态射的成捆的代数X *()的坐标环OT)的T
  • 如果一个是拟凝聚层分级代数的代数叠加X在一个方案,然后有一堆项目()推广建设工程投影方案()一次环
  • 这个主束模量堆栈在代数曲线X还原组的行动G,通常以栈
  • 这个形式群法则模栈分类正式的法律
  • Picard栈推广皮卡德品种

拟凝聚层代数栈

在一个代数栈可以构造一类拟凝聚层类似于准相干一方案的范畴。

拟凝聚层大致是一个看起来像一个模块的局部环上的束。第一个问题是决定什么人所说的“局部”:这涉及一个Grothendieck拓扑结构的选择,还有很多可能的选择,其中有一些问题,没有一个完全令人满意的。Grothendieck拓扑应该强大到足以使栈的局部仿射本拓扑方案局部仿射Zariski拓扑,这是一个好的选择方案三发现,代数空间和涅–芒福德栈是局部仿射在层拓扑所以通常采用层拓扑这些,而代数栈是局部仿射在光滑的拓扑结构,因此可以在这种情况下使用光滑拓扑。对于一般的代数栈层拓扑没有足够的开集:例如,如果G是一个光滑的连接组则只有层覆盖分类堆BG是份BG的工会,这是不足以给quasicoherent滑轮的权利理论。

而不是使用光滑拓扑代数栈一个经常使用它的变形称为LIS等拓扑(对于利瑟层:短利瑟是光滑的法语术语),具有相同的开集为光滑拓扑但开覆盖了层而不是光滑映射。这通常是导致拟凝聚层的一个等价类,但更容易使用:例如,它是更容易与代数空间层拓扑比较。LIS等拓扑结构有一个微妙的技术问题:栈之间的态射一般不给相应的论题之间的态射。(问题是,当一个人可以构造一对伴随函子F*F*,作为论题的几何性需要,函子F*一般是不能离开具体。这个问题是由于在发表的论文和书籍臭名昭著的一些错误。【一])这意味着射栈下构建一个quasicoherent捆回调需要一些额外的努力。

也可以使用更精细的拓扑结构。最合理的“足够大”Grothendieck拓扑似乎导致拟凝聚层等价类,但更大的一个拓扑结构是很难处理,所以一般都喜欢用小的拓扑结构,只要他们有足够的开集。例如,大FPPF拓扑结构导致实质上的拟凝聚层的同一类别的LIS等拓扑结构,但有一个微妙的问题:自然嵌入拟凝聚层为OX在这种拓扑结构中的模块是不准确的(不保存内核一般)。

其他类型的栈

微堆拓扑叠加在一个类似于代数栈的定义,除了仿射方案基本范畴是由光滑流形拓扑空间范畴取代。

通常可以定义的概念,一个n -层或N–1栈,这大约是一种捆值在n–1类。这样做有几个不同的方式。1-sheaves如滑轮一样,和2-sheaves是堆叠相同。

集理论问题

有与栈的理论通常一些小集基础理论问题,因为堆栈通常被定义为一定的仿函数类的集合,因此没有设置。有几种办法来处理这个问题:

  • 一个能与Grothendieck宇宙工作:堆栈则是一些固定的Grothendieck宇宙类之间的函子,所以这些类和堆叠在一个较大的Grothendieck宇宙集。这种方法的缺点是,一个有足够的Grothendieck宇宙的存在,它本质上是一个大基数公理。
  • 一个可以定义堆仿函数的足够大的秩集集,并认真的记下各设置一个队伍使用。这里的问题是,它涉及到一些额外的相当累人的记账。
  • 可以使用反射原理从集合论认为人可以找到的任何有限的片段的ZFC公理的模型表明,一个可以自动找到设置足够接近的所有集合的宇宙近似。
  • 一个可以忽略的问题。这是许多作者所采取的方法。

参见

收起全文

★·°遇見、堇色年華 ﹏

【十里桃花】念

【十里桃花】念

喜欢以昏黄书页的方式被记住/ 辞海里蛰伏一只过冬的蝉/ 绿灯等三秒红灯以前/ 长发和短发结为连理/ 无忧无虑的走向消亡/ 天在落下/ 我在枯井里等血液涌动的喷泉/ 额头被石头吻住/ 人影远去,不念西天不念梵/... 阅读全文

【十里桃花】念

喜欢以昏黄书页的方式被记住/

辞海里蛰伏一只过冬的蝉/

绿灯等三秒红灯以前/

长发和短发结为连理/

无忧无虑的走向消亡/

天在落下/

我在枯井里等血液涌动的喷泉/

额头被石头吻住/

人影远去,不念西天不念梵/

收起全文

★·°遇見、堇色年華 ﹏

【十里桃花】离开

大张旗鼓的离开其实都是试探,真正的离开是没有告别的。 从来扯着嗓门喊着要走的人,都是最后自己把摔了一地的玻璃碎片,闷头弯腰一片一片拾了起来。 而真正想离开的人,只是挑了一个风和日丽的下午,裹了件最常穿的大衣,出了门,然后... 阅读全文

大张旗鼓的离开其实都是试探,真正的离开是没有告别的。 

 

从来扯着嗓门喊着要走的人,都是最后自己把摔了一地的玻璃碎片,闷头弯腰一片一片拾了起来。

 

 而真正想离开的人,只是挑了一个风和日丽的下午,裹了件最常穿的大衣,出了门,然后就再也没有回来过。

收起全文
人人小站
更多热门小站
X