小站会根据您的关注,为您发现更多,

看到喜欢的小站就马上关注吧!

下一站,你会遇见谁的梦想?

小站头像

科学

科学小站  前沿科普资讯;探索生命奥秘;趣味发明设计;发现人类未知;追求万物本源;摧毁谣言迷信! 

RSS 归档

站长

389959人关注
2013 / . 04 / . 10

美国科学家利用人类脑波遥控老鼠尾巴运动

美国科学家利用人类脑波遥控老鼠尾巴运动

  利用这个新系统,研究人员只要佩戴一顶装满传感器的帽子,就能遥控一只老鼠的尾巴摆动

美国科学家利用人类脑波遥控老鼠尾巴运动

  在第一项此类试验中,研究人员已经能够借助一个人控制正在摆动的老鼠的尾巴,而且不用进行有创移植手术

美国科学家利用人类脑波遥控老鼠尾巴运动

  这项独一无二的试验为“精神控制”系统铺平了道路

  新浪科技讯北京时间4月10日消息,据国外媒体报道,美国哈佛大学的研究人员已经完成一项非常古怪的试验,人类参与者仅借助脑波来遥控一只老鼠的尾巴摆动。这项独一无二的试验为“精神控制”系统铺平了道路。研究人员甚至希望有一天能用类似系统来“教授”瘫痪患者重新学会移动他们的四肢。

  波士顿哈佛大学医学院的柳承世(Seung-Schik Yoo)及其同事已经研制出一个系统,它通过电脑把一个人与一只老鼠联系在一起,这个过程不用给人或者是老鼠进行大脑移植。人类志愿者佩戴的电极帽,能够利用脑电图(EEG)监控他们的大脑活动。在实验室的另一边,一只经过麻醉的老鼠被固定在一个特殊装置上,该装置只要把超声波脉冲传输给老鼠的运动皮质,就会激活老鼠的神经元。对人类大脑活动进行监控时,研究人员主要着眼于一种与视觉刺激相对应的特殊脑电图模式。

  人类志愿者看电脑屏幕上的频闪光时,脑电波就会同步与频闪的频率保持一致。但是当他们把注意力转移到正在摆动的老鼠的尾巴上时,注意力的变化对脑电图产生干扰,导致信号被发送到电脑上。电脑把该信号翻译成超声波脉冲,刺激老鼠的运动皮质,促使它的尾巴运动起来。利用这个系统,6名志愿者全部都能毫不费力地促使老鼠的尾巴运动起来,该系统的精确度高达94%。柳承世教授说,在可以预见的将来,两个人可能会采用类似系统控制对方的运动。

  该科研组写道:“我们的研究结果证实了以电脑为媒介的脑-脑接口(把两种生物学实体的中枢神经功能联合在一起)的可行性,这或许会为神经系统学研究提供意想不到的机会,帮助我们找到潜在的治疗应用途径。”(孝文)

2013 / . 03 / . 15

IBM公司研究“电子血液”为计算机提供能源和冷却

       据美国电子时代网站2013年3月11日报道,为实现对未来大型传感器网络(如将在2024年建成的平方千米阵(SKA)射电望远镜)传回的亿亿次级数据流的实时分析能力,IBM公司正在进行“电子血液”的研究,希望既可实现电子器件的冷却,又可为未来的认知计算机提供能量来源。

  IBM研究中心的科学家布鲁诺·米歇尔说:“受到大脑结构的启发,我们正在研究一种新的方法。大脑中的神经元可同时通过血液流动实现冷却和供能,通过复制这种方式,我们希望将器件的体积压缩1百万倍,能效提升1万倍。

  IBM在本周一(3月11日)表示,南非国家研究基金会已加入IBM和荷兰射电天文学研究所(NIRA)合作开展的“多姆”(Dome)研究项目中,共同推动对大型射电望远镜传回的亿亿次级数据流实时分析的研究。该大型射电望远镜安装在澳大利亚边远沙漠中长约1824英里的条状地带。

  南非在该项目中将管理64个原始数据磁盘,并协助IBM和NIRA建立可进行亿亿字节数据流实时分析的计算架构。南非和IBM在荷兰德伦特新成立了亿亿次级技术研究中心,“多姆”项目研究人员将在此开发认识计算技术,实现类似人脑的学习和推理过程,同时提升能量效率。

  米歇尔说:“如果分析一个典型的芯片将发现,实现芯片功能的晶体管只占芯片体积的百万分之一,而98%的体积都用于冷却;但在人类的大脑中,体积的40%用于实现功能,50%实现互连,只有10%用于冷却,我们希望能制造出接近这个比例的电脑。”

  电解液为流电池提供带电离子的同时,实现了液体冷却。采用此方法,通过在3D堆叠芯片间制作出通道并注入电解液,可实现3D堆叠芯片的冷却和供能。由于通道的每个鳍均可作为流电池的电极,因此电解液在通道内流动即可实现供能;电解液在流经3D堆叠芯片后,将流入中央储藏室进行冷却和重新充电,然后再流回芯片中。

  “多姆”项目研究人员将制作出使用液体冷却和供能的3D堆叠芯片的微服务器原型来处理SKA磁盘数据,提供前所未有的图像分辨率,并有希望使科学家可及时捕获从宇宙大爆炸时即开始传播的微弱信号。由于从SKA传回的数据流总量将超过互联网的总流量,该项目最终的目标是为未来认知计算机提供亿亿次级的数据处理能力,满足全球商业、金融和医疗数据处理的需要。(工业和信息化部电子科学技术情报研究所张倩)

2013 / . 03 / . 06

新型超级电池可几秒内充满手机成本低廉

新型超级电池可几秒内充满手机成本低廉

  该科研组利用DVD刻录机制成的微型超级电容器。它们的充电或者是放电速度比常规电池快100倍到1000倍

新型超级电池可几秒内充满手机成本低廉

  这项新突破还将大大改变电池的设计,让它们变得更小、更容易成为电子产品的组成部分

  新浪科技讯北京世界3月5日消息,据国外媒体报道,美国研究人员已经公布了他们研制的一种新型电池,这种电池能在几秒内给手机,甚至是汽车充满电。

  这种名叫微型石墨烯超级电容器的装置的充电或者是放电速度比常规电池快100倍到1000倍。这种利用单原子层碳制成的电池很容易生产,也很容易与电子产品结合到一起,甚至有可能促使更小的手机诞生。该科研组表示,他们的新突破不仅将会导致充电更快的手机和汽车诞生,而且也会催生更小的电子产品。美国加利福尼亚大学洛杉矶额分校亨利-萨缪理工程和应用科学学院的材料科学同时也是工程学教授的理查德-卡纳说:“储能设备与电路相结合具有很大挑战,它经常会对整个系统的小型化产生很大限制。”

  研究人员为了研制这种新的微型超级电容器,他们采用两维碳片,即石墨烯,它在第三维只有单原子那么厚。该科研组还发现一种能够轻松生产这种电池的方法,即采用标准DVD刻录机。艾尔-卡迪说:“制造微型超级电容器的传统方法涉及到劳动密集型光刻技术,事实证明,这种方法很难制造出符合成本效益的装置,因此它大大限制了它们的商业应用。而我们采用消费档次的光雕刻录,用比传统装置低很多的成本大面积生产石墨烯微型超级电容器。采用这项技术后,我们能用便宜材料,在不到30分钟的时间里,在一个单一的光盘上生产超过100个微型超级电容器。”

  为了产生一个高效超级电容器电池,研究人员需要分开安装两个电极,以便让它们中间的可用表面积达到最大化。这么做会导致超级电容器储存更多电荷。以前的设计把一层层石墨烯堆叠在一起,当做电极,这就如同三明治上的面包片。然而,这种做法在电子电路上并不起作用。在新设计中,研究人员以相互交叉的形式,把电极并排安装,这与相互交叉的手指类似。这么做有助于扩大两个电极的可用表面积,并减少电解液里的离子需要传播的路线。因此新型超级电容器具备比堆叠对比物更强的充电能力和速度性能。研究人员表示,人们甚至可以在家制作这种东西。

  艾尔-卡迪说:“这种方法非常简单、成本效率高,而且能在家中生产。我们只需一个DVD刻录机和分散在水里的氧化石墨,这种材料能以很低的价格在市场上买到。”该科研组表示,现在他们希望能与电子产品生产商合作。卡纳说:“目前我们正在寻找商业合伙人,帮助我们大量生产我们的石墨烯微型超级电容器。”(孝文)

2013 / . 03 / . 05

科学家研制有学习能力忆阻器 可造人工大脑

科学家研制有学习能力忆阻器 可造人工大脑

  一个能学习的纳米元件:比勒菲尔德大学研制的忆阻器被内置于比人头发薄600倍的芯片中

  据国外媒体报道,长久以来,科学家一直梦想着造出像大脑一样的电脑。大脑比电脑更加节能,而且还会自主学习,不需要任何编程。来自比勒菲尔德大学物理学系的高级讲师安迪·托马斯博士正在做这方面的努力,他的研究材料是忆阻器(memristor),一种能够模仿神经功能的微电子元件。托马斯及其同事在一年之前就制作出了一种具有学习能力的忆阻器。现在,安迪·托马斯利用这种忆阻器作为人工大脑的关键部件,他的研究结果将于近期发表在《物理学学报D辑:应用物理学》杂志上。

  忆阻器由极薄的纳米薄膜制成,可用于连接电子回路。多年来,忆阻器一直被视为神经突触的电子版。突触是神经元之间联系的桥梁,神经元活动越多,这种突触联系也就越多。通常,一个神经元与其他神经元通过数千个突触进行联系。忆阻器可以接收来自电子回路的脉冲,并且在关掉电源后,仍能“记忆”先前通过的电荷量。因此,忆阻器允许通过的电流量取决于之前通过电流的强度及通过的时间。

  安迪·托马斯解释说,因为忆阻器与突触的这种相似性,使其成为制造人工大脑——从而打造出新一代的电脑——的绝佳材料,“它使我们得以建造极为节能、耐用,同时能够自学的处理器。”托马斯的文章总结了自己的实验结果,并借鉴其他生物学和物理学研究的成果,首次阐述了这种仿神经系统的电脑如何将自然现象转化为技术系统,及其中应该遵循的几个原则。这些原则包括,忆阻器应像突触一样,“注意”到之前的电子脉冲;而且只有当刺激脉冲超过一定的量时,神经元才会做出反应,忆阻器也是如此。

  正是由于这种特性,神经突触才能在大脑学习的过程中发挥关键作用。安迪·托马斯以巴甫洛夫的经典生理学实验为例,说明了学习的过程。如果狗看到食物,就会出现流口水的自然反应;如果狗每次看到食物时都听到铃声,那么铃声这种“中性”的刺激就会与引起反射反应的刺激联系起来。所以,最后狗即使没有看到食物,在听到铃声时也会流口水。这种条件反射的生理原因是,做出反射反应的神经元与触发这些反应的神经元之间具有更多的突触联系。

  如果中性的响铃刺激与食物刺激同时出现,狗的大脑就会开始学习,其负责这两种刺激的神经元之间建立起更多的联系。“你也可以用忆阻器建立起类似的电子回路,这是通往仿神经处理器的第一步。”安迪·托马斯说,“这是完全有可能做到的,因为相比原来基于比特(bit)的计算机处理器,忆阻器对信息的存储更加精确。”忆阻器和比特都是利用电子脉冲进行工作,但后者不能进行任何微小调整,而只能“开”和“关”。相比之下,忆阻器能够持续增高或减弱电阻。托马斯解释道:“这也是人工大脑进行学习和遗忘的过程中,忆阻器如何发挥作用的基础。”(任天)

 

2013 / . 02 / . 19

澳研制新型魔幻金属液滴 可切割融合能弹起/图

澳研制新型魔幻金属液滴 可切割融合能弹起/图

  澳大利亚科学家研制的金属液滴,外面具有纳米粒子材料的混合涂层

  新浪科技讯 北京时间2月18日消息,近日,澳大利亚的一个科研团队在《先进功能材料》(Advanced Functional Materials)杂志上公布了一项新的研究成果。研究负责人,来自墨尔本皇家理工大学电气与计算机工程系博士在文章中描述道,这种新型的金属液滴既能被分割,也能重新融合,甚至在较强的外力下也能保持形状。

  该金属液滴主要由镓铟锡合金(一种共晶合金)构成,其外面具有由绝缘或半导体的微粒和纳米粒子材料制成的涂层。其中绝缘材料主要为聚四氟乙烯(即特氟龙)和硅,导体材料主要为二氧化钛、三氧化钨和碳纳米管。

  这项新技术使研制柔软的、可延展的电子产品成为可能。“现阶段说这个有点为时过早,但我们相信在未来它具有很广阔的应用前景,”维贾伊·西凡博士说,“包括可扩展的天线,以及能够伸展和重构的金属线路等。”该技术有望用于制造能自动恢复的液态金属线路,以及能塑造成各种形状的柔软电子产品、半导体回路,甚至是液态滚珠轴承。

  澳大利亚国立大学电子材料工程系的帕特里克·克拉斯(Patrick Kluth)说:“类似这种技术在实际应用中的主要限制因素包括:制造工艺的再现性和扩展性、制造成本控制,以及在实际条件下的长期稳定性。这些因素将决定此类技术创新能否获得成功。”

  事实上,该金属液滴已经在一些地方开始了应用,如自动调温器和滚动传感器上的水银开关。水银具有毒性,不适合用于电子产品。由于金属液滴具有纳米粒子制成的涂层,因此不会粘在物体表面。而且正是这一功能性涂层的存在,使它具有了类似晶体管的作用。

  在实验中,这种金属液滴能够弹起,并且在切割成两半的时候,能继续保持液滴形状;将其融合,则又恢复到最初的大小和结构。这不禁让人想起科幻电影《终结者2》中的液态金属机器人。此外,该金属液滴不会粘在其他表面上,这对于镓铟锡合金来说十分不寻常,后者不仅极容易污染物体表面,而且具有腐蚀性。(任天)

2013 / . 02 / . 02

海豚被钓鱼线缠住主动寻找潜水员帮忙(图)

海豚被钓鱼线缠住主动寻找潜水员帮忙(图)

  这条海豚径直游向潜水员拉洛斯,寻求帮助。

海豚被钓鱼线缠住主动寻找潜水员帮忙(图)

  钓鱼线缠住这条海豚。一个钓鱼钩倒钩在它的胸鳍上。

海豚被钓鱼线缠住主动寻找潜水员帮忙(图)

  这位潜水员说这条海豚靠近他,无疑需要帮助

海豚被钓鱼线缠住主动寻找潜水员帮忙(图)

  这位潜水员除去钓鱼钩,把海豚嘴部周围的钓鱼线切断。他把全部钓鱼线除去后,这条海豚开心离开了,再也没有回来。

  据国外媒体报道,一位潜水员在夏威夷水域把一条被钓鱼线缠住的海豚救出。这次惊人遭遇发生在1月11日,刚好被摄像机录下来。潜水员凯勒-拉洛斯利用8分钟的大部分时间照顾这只温顺的哺乳动物,使它很快重获自由。

  这条海豚发出尖叫声时,拉洛斯正带领一个通气管潜水组在大岛的科纳国际机场附近体验潜水。他说:“它向我游过来,往我身上靠。毫无疑问,这条海豚需要帮助。”这个潜水组正在欣赏水中美景时突然听到一条海豚发出尖叫声,后来看到它朝他们游过来。

  拉洛斯对当地KITV电视台说,没过多久他就注意到这条海豚的运动受到限制,因为它被钓鱼线缠住,而一个钓鱼钩刚好倒钩在它的腹鳍上。这只哺乳动物允许拉洛斯帮它摆脱约束重获自由。这位潜水员说:“我设法把钓鱼线除去,然后又将钓鱼钩从它的腹鳍上拿走。它嘴外缠着钓鱼线,但缠住腹鳍的线更紧。它不能自由活动。我很担心如果用力拉钓鱼线会伤到它。我只有把线切断,除去它。”

  这位潜水员表示这只动物很有耐心,也十分平静,使他顺利除去钓鱼线。身为专业潜水指导员的拉洛斯说:“宽吻海豚向我靠近多次,它们真的是很聪明的动物。(孝文)

2013 / . 01 / . 27

美国研究显示孤独或致免疫力下降

核心提示:美国一项最新研究成果显示,孤独感与人体免疫能力下降有关,这表明孤独感或损害人体免疫健康。

 

美国研究显示孤独或致免疫力下降
福克斯新闻网

 

美国俄亥俄州立大学的研究人员选定134名中年肥胖人士和144名乳腺癌幸存者作为研究对象,对他们进行血液检测,并通过问卷测试评估其社会心理状态。

 

研究人员表示,疱疹病毒潜伏在大多数人群中,一般并不致病,然而人体内潜伏的疱疹病毒一旦处于激活状态,人体免疫系统产生的抗体也随之增加。因此,他们通过检测研究对象体内的血液抗体含量,衡量免疫系统是否正常运行。

免疫系统反应过度使抗体过高,一般会导致炎症。研究人员发现,研究对象越孤单,体内潜在的疱疹病毒越活跃,造成炎症的蛋白质含量也越高。这表明,孤独感可能导致了人体免疫系统对抗体管理能力的降低,最终导致人体免疫力下降。

研究人员说,作为一种慢性的应激原,孤独感这种社会心理状态持续时间较长,其引发的免疫系统反应也难以控制。

该研究成果日前在美国人格与社会心理学协会年会上发布。

2013 / . 01 / . 21

新技术可修剪DNA导入人体细胞:艾滋病或将治愈

新技术可修剪DNA导入人体细胞:艾滋病或将治愈

  人类细胞中的基因组是RNA(核糖核酸)编程的,而来自细菌的Cas9酶可以作为基因组工程的发动机

  新浪科技讯北京时间1月21日消息,一种简便、精确而且廉价的DNA(脱氧核糖核酸)修剪技术将革命性地改变遗传医学的面貌。在目前的遗传疾病治疗中,替换缺陷基因的方法极少,而且都十分昂贵和复杂。新的技术能够将修剪的DNA导入人体细胞,为遗传疾病甚至是艾滋病的治愈带来了希望。

  来自加州大学伯克利分校霍华德·休斯医学研究所的珍妮弗·端娜(Jennifer Doudna)和马丁·季聂克(Martin Jinek),以及瑞典分子感染医学实验室的艾曼纽·夏邦杰(Emmanuelle Charpentier)于去年共同发表了研究成果。在《自然-生物技术》杂志的2012年回顾中,该文章被称为一篇“力作”。

  这一评价是基于研究团队在2012年6月28日发表于《科学》杂志上的论文作出的。在论文中,研究者描述了一种精确定位并切割细菌DNA的方法。近期发表在《科学快讯》(Science Express,属《科学》杂志的网上预先出版和报道服务)上的两篇新文章指出,这一技术也能够应用在人体细胞中。珍妮弗·端娜及其团队关于人体细胞中实验成功的研究报告,也将于近日在开放获取期刊《eLife》上发表。

  “修饰生物体基因组特定部分的能力,对我们进一步深入理解生物学十分必要,”珍妮弗·端娜说,“然而,在动物和人体中进行这种修饰的技术都遇到了瓶颈,无论是实验研究还是临床治疗的发展。新技术将突破这种瓶颈,因为它意味着任何人都能通过这种基因组的编辑和重组,将基因变化导入哺乳动物的细胞,甚至很有可能导入其他真核生物的细胞中。”珍妮弗·端娜目前是加州大学伯克利分校的分子和细胞生物学兼化学教授,同时也是哈佛·休斯医学研究所的研究员。

  “这无疑将是一个重大突破,”哈佛医学院遗传学教授乔治·丘奇(George Church)在发表于《科学快讯》的文章中写道,“将会有许多人开始应用和练习这一技术,因为它更加容易实施,而且比其他技术精简百倍。”

  “从我们收到的反馈来看,这项技术很可能在动物和植物基因组工程研究中带来革命性的改变,”在劳伦斯伯克利国家实验室同样拥有职位的珍妮弗·端娜说,“它很容易进行编码,而且在未来很可能像聚合酶链式反应(PCR)技术一样成功。”PCR技术是生物学研究和遗传医学中的革命性突破,能够轻松地将特定的DNA片段扩增数百万倍,极大推动了生命科学的发展。

  “巡航导弹”

  不久之前的两项进展,锌指核酸酶(zinc-finger nucleases,ZFNs)和转录激活因子样效应物核酸酶(Transcription Activator-Like Effector Nucleases,TALEN)都获得了众多关注,并一起被《科学》杂志评为2012年的十大科学突破之一。《科学》杂志中将这两种酶称为“巡航导弹”,因为它们使科学家能定位基因组中的特定部位,并能准确修剪DNA片段。

  通过这些技术,研究者可以精确地切割并去除DNA片段,将替换的DNA片段导入细胞,插入到相应的位置。由此,医生可以将存在缺陷或者变异的基因替换为正常的基因拷贝。一家名为Sangamo Biosciences的临床生物制药公司已经开始尝试。在该公司的研究中,感染艾滋病毒的患者在接受了特定基因的替换之后,显示出了抗艾滋病的效果。

  锌指核酸酶和TALEN技术都需要合成一种新的基因,用于编码与所修改DNA新位点对应的蛋白质。相比之下,新技术中所用的蛋白质只需要一个小的RNA分子就能编码。在《科学快讯》杂志的文章中,乔治·丘奇将新技术所用的Cas9酶与TALEN做了比较,在向哺乳动物细胞插入基因的过程中,前者比后者的效率要高5倍。

  Cas9酶-RNA的复合物比TALEN更容易合成,而且更为小巧,这使它很容易被导入细胞中,甚至可以同时进行数百个基因的剪切。与其他技术相比,该复合物的毒性也更低。“现在谈论这种技术(对TALENs和锌指核酸酶)的胜利还为时过早,”乔治·丘奇说,“但它看起来很有前景。”

  基于细菌的免疫系统

  珍妮弗·端娜是在研究细菌免疫系统的过程中发现Cas9酶的。在这种酶的帮助下,细菌能够利用剪切DNA片段的方法对抗病毒。病毒的DNA片段被细菌剪切,并接入自身的DNA中,之后细菌合成相应的RNA片段,用于结合病毒并抑制其活性。

  数年前,加州大学伯克利分校的地球和行星科学教授吉尔·班菲尔德(Jill Banfield)将这种病毒防御机制介绍给了珍妮弗·端娜。受其启发,端娜开始专注研究细胞利用RNA的机制。通常情况下,细胞以DNA为模板合成RNA,之后再由RNA合成蛋白质。

  珍妮弗·端娜及其团队发现了酶-RNA复合物切割DNA的细节:Cas9酶与两个短链RNA结合形成复合物,之后通过RNA序列与DNA中的特定区域结合。科学家后来简化了该系统,只用一个RNA片段就能定位并剪切细菌DNA的特定区域。“与数十年来其他基因工程中所用的技术相比,新技术的美妙之处在于它只需要一种酶,”端娜说,“这种酶不需要在你想定位的每个位点上都进行改变,你只需要用不同的转录RNA对它重新编码,而这一点很容易设计并实现。”

  近期的研究显示,这种细菌防御系统在人体细胞中也同样能成功运作。“从模糊的细菌免疫系统到一项极具潜力的技术,这将改变我们研究和操纵哺乳动物细胞,以及其他类型动植物细胞的方式,”珍妮弗·端娜说,“这代表了基础科学在影响人类健康的重大发现中所扮演的重要角色。”(任天)

2013 / . 01 / . 20

婴儿天生都是科学家

  30年前,大多数心理学家、哲学家和精神病学家都认为,婴幼儿以自我为中心,没有理性和是非感,他们的认知仅限于当前的具体事物,无法理解前因后果,也不能体会他人感受,更分不清现实与虚幻。即使现在,人们也常把孩子看作不完整的人。

婴儿天生都是科学家

 

婴儿都知道什么? [保存到相册]

  但过去30年的研究发现,婴儿知道的事情比我们过去认为的多得多。孩子们认知世界的方式,与科学家非常相似——开展实验,分析数据,形成直观的生物、物理和心理学理论。他们的惊人能力从何而来?2000年前后,科学家就开始研究这些能力背后的计算、进化和神经机制,研究得到的革命性发现不仅会改变我们对婴儿的看法,也为我们提供了一个全新的角度去认识人类本质。

  婴儿知道什么?

  为什么这么长时间以来,我们对婴幼儿的看法一直错得这么离谱?如果不仔细观察4岁前(年龄段的划分稍后会讲到)的儿童,你很可能会认为他们什么也不会。毕竟,婴儿不会说话;而学龄前儿童,也不能条理分明地表达自己的想法。向3岁左右的小孩提出一个开放式问题,你得到的回答很可能是意识流的,虽然可爱,却不知所云。瑞士心理学先驱让·皮亚热(Jean Piaget)等较早研究儿童思维的科学家认为,儿童的想法毫无理性和逻辑可言,只以自我为中心,对因果关系没有概念。

  转变始于上世纪70年代末。科学家开始用新技术观察婴幼儿做了什么,而不只是记录他们说了些什么。通常,婴儿更喜欢观察新奇事物,会把更多注意力放在突发事件而非可预测的事件上,因此研究人员可根据这种行为,弄清楚他们在期待什么。不过,最有力的证据还是来自对婴幼儿行为的直接观察:他们想要去抓或爬向什么东西?如何模仿周围人的动作?

  尽管婴幼儿难以告诉我们他们的想法,但我们可以更巧妙地利用语言,推测出他们知道些什么。美国密歇根大学安阿伯分校的亨利·威尔曼(Henry Wellman)就曾分析儿童自发对话的录音,从中寻找能揭示儿童想法的线索。我们还可以向儿童提一些针对性极强的问题,比如让他们在两个选择中进行取舍,这比开放式问题更有利于分析。

  在上世纪80年代中期及整个90年代,科学家通过这些技巧发现,婴幼儿对周围世界已有很多了解,他们的认知并不限于具体的和当前的感受。美国伊利诺伊大学的勒妮·巴亚尔容(Renée Baillargeon)和哈佛大学的伊丽莎白·S·斯佩尔克(Elizabeth S. Spelke)发现,婴儿能够理解一些基本的物理关系,比如运动轨迹、重力和容量等。当玩具车似乎要穿过一堵实心墙时,他们往往看得更起劲,对日常生活中符合基本物理学原理的事件却不太关注。

  长到三四岁,儿童具有了一些基本的生物学概念,对生长、遗传、疾病也有了初步认识。这说明儿童在看待事物时,不仅仅停留在表面。美国密歇根大学的苏珊·A·格尔曼(Susan A. Gelman)发现,幼儿都认为动植物有一种看不见的“精髓”,不管外表怎么变化,这个“精髓”始终不变。

  对婴幼儿来说,最重要的知识是对人的认识。美国华盛顿大学的安德鲁·N·梅佐夫(Andrew N. Meltzoff)研究表明,刚出生的婴儿就知道人是特殊的,会模仿别人的面部表情。

  1996年,我和贝蒂·雷帕科利(Betty Repacholi,现居住在华盛顿)发现,18个月大的婴儿就能分辨他人的喜好。实验中,研究人员把一碗生的花椰菜和一碗金鱼饼干放在14或18个月大的婴儿面前,然后每份都品尝一下,做出喜欢或厌恶的表情,然后向孩子伸出手,问道:“能给我一点吗?”如果研究人员表现得似乎很喜欢花椰菜,18个月大的婴儿通常会把花椰菜递出去,即使他们自己不喜欢这种东西(14个月大的婴儿总是拿饼干给研究人员)。这项研究表明,年龄如此小的孩子也不是完全以自我为中心,他们至少能以简单的方式理解他人的想法。到了4岁,孩子对日常心理学的理解更加深入,可以解释一个人是否因为相信一些错误的东西而举止反常。

  到了20世纪末,一些研究已经证实,婴儿具有抽象而复杂的知识,而且随着年龄增长,这类知识还会迅速增加。一些科学家甚至认为,婴儿生来就掌握很多知识,比如对于事物和人类的行为规律的认识。毫无疑问,新生儿的大脑绝不是一片空白,不过儿童知识结构的变化说明,他们也在通过自身经历认识世界。

  人类如何从大量复杂的感官信息中认识世界,一直是心理学和哲学上的一大谜团。过去十年,对于婴儿为何能又快又多又准地获取知识,科学家已经了解得越来越多。确切地说,我们发现婴儿具有一种非同寻常的能力:从统计规律中学习。 像科学家一样分析

  1996年,美国罗切斯特大学的珍妮·R·萨弗兰(Jenny R. Saffran)、理查德·N·阿斯林( Richard N. Aslin)和埃利萨·L·纽波特(Elissa L. Newport)通过对语言语音模式的研究,首次证实婴儿具备这样的能力。他们给8个月大的婴儿播放一组具有统计规律的音节,比如“bi”跟在3次“ro”之后,而“da”总是在“bi”的后面。然后,他们再播放另一组音节,可能与上一次相同,也可能不同。如果统计规律不一样,婴儿明显会花更多的时间去听这组音节。最近一些研究显示,婴儿不仅能发现音调、视觉场景中的统计规律,还可以归纳出更为抽象的语法规则。

  婴儿甚至能理解统计样本和取样群体间的关系。在2008年的一项研究中,我的同事徐飞(Fei Xu)给一些8个月大的婴儿展示了满满一盒乒乓球,混放着80个白球和20个红球。然后,他看似随机地从中拿出5个球,如果是4红1白(这种情况不大可能出现),而不是和总体比例一致的4白1红,婴儿就会显得更吃惊——也就是说,他们会花更多的时间和精力来观察乒乓球。

  统计规律仅仅是第一步。更让人吃惊的是,婴儿像科学家一样,能根据统计规律作出判断,形成对世间万物的看法。在另一版本的“乒乓球实验”中,实验对象是一组20个月大的婴儿,他们面前的玩具由乒乓球换成了青蛙和鸭子。研究人员先从盒子里拿出5个玩具,然后让婴儿从桌上的玩具(还是青蛙和鸭子)中挑一个给她。如果盒子里玩具青蛙居多,研究人员拿出来的也以青蛙为主,婴儿在挑选玩具时就没有明显倾向。相反,如果研究人员拿出来的玩具主要是鸭子,婴儿就倾向于给她鸭子——显然,婴儿认为根据统计学规律,从盒子里拿出的玩具不可能以鸭子为主,因此研究员的选择不是随机的,而是她比较喜欢鸭子。

  我们实验室一直在研究幼儿如何利用统计学证据和实验来弄清事件的前因后果。初步结果显示,认为幼儿没有因果概念的想法绝对是错误的。研究中,我们使用了一台名为“blicket检测器” (blicket detector)的设备:把某些物品放在上面,它会发光,播放音乐,表示这是blicket;而把另一些物品放上去,则没有任何动静,表示这不是blicket。利用该设备,我们可以向幼儿演示多种模式的实验现象,然后看他们能从这些现象中归纳出怎样的因果关系。究竟哪些物品才算是blicket?

  2007年,我和塔马·库什尼尔(Tamar Kushnir,现任职于美国康奈尔大学)发现,学龄前儿童能通过概率分析,获知“blicket检测器”是如何运行的。我们反复从两个物块中挑一个放到设备上:如果放的是红色物块,3次中有两次能使设备发光,而放蓝色物块时,3次中设备只会发光1次。尽管孩子们还不会加减运算,但他们更倾向于把红色物块放到设备上。

  遥控设备上的物块,使之晃动,也可使设备发光。在这种情况下,幼儿仍能正确判断出,晃动哪个物块能以更高概率使机器发光。虽然在实验之初,孩子们认为隔空控制物块是不可能的(我们曾问过他们),但根据事件发生的概率,他们能不断发现让他们感到吃惊的事实,从全新的角度去认识这个世界。

  在另一项实验中,我和劳拉·舒尔茨(Laura Schulz,现任职于美国麻省理工学院)给一组4岁儿童展示了一个玩具,玩具顶部有一个开关和一蓝一红两个齿轮。打开开关,齿轮就会转动。这个玩具虽然简单,工作原理却可以有很多种:可能是开关让两个齿轮同时转动,也可能是开关启动了蓝色齿轮,蓝色齿轮再带动红色齿轮,诸如此类。我们向孩子们展示了每种原理的示意图,比如红色齿轮的转动可能是因为受到蓝色齿轮的推动。接着,我们拿来好几个这样的玩具,每个玩具的工作原理都不同,然后为孩子们做一些相对复杂的演示,暗示玩具是怎么运转的。孩子们会看到,如果我们取下红色齿轮,再打开开关,蓝色齿轮仍会转动,但如果先取下蓝色齿轮再打开开关,玩具不会有任何动静。让人吃惊的是,当我们让这些孩子挑选每个玩具对应的运行原理图时,他们能根据自己看到的演示过程,很快弄清楚玩具是怎么运转的,找出相应的原理图。不仅如此,当另一组孩子单独面对玩具时,他们会以各种方式把玩玩具,以便弄清楚运行原理——就像在做实验一样。

  舒尔茨用另一种玩具又做了一组实验。这个玩具有两根杠杆,分别连着玩具鸭子和玩偶。按一下杠杆,鸭子或玩偶就会冒出来。向一组学龄前儿童演示时,一次只按一根杠杆,相应的玩具即会出现。而给第二组儿童演示时,则同时按两根杠杆,鸭子和玩偶会一起出现,但他们从未看到单独按一根杠杆时会出现什么情况。然后,研究人员让孩子们自己玩这个玩具。第一组孩子花在玩具上的时间,远少于第二组的孩子,因为他们已经知道玩具的工作原理,兴趣大减。第二组孩子则面对着一个谜团,他们不由自主地玩着玩具,很快就弄清楚按下一根杠杆会发生什么事情。

  这些结果显示,孩子们自发玩耍的过程(任何东西都想抓来玩),其实也是不断实验、探究事物因果关系的过程——这是最有效的探索世界是怎么运行的方法。 大脑中的“计算机”

  显然,孩子们并非像成年科学家那样,有意识地开展实验或分析数据。不过,儿童大脑在无意识中处理信息的方式,必定与科研思维类似。认知科学的一个重要概念就是,大脑就像由进化设计出的计算机,运行着由日常经历编写的程序。

婴儿天生都是科学家

 

大脑中的“计算机” [保存到相册]

  计算科学家和哲学家已开始用与概率相关的数学概念,来理解科学家和儿童那强大的学习能力。在一种全新的机器学习程序开发方法中,科学家运用了所谓的“概率模型”(也叫贝叶斯模型或贝叶斯网络),这样的程序可解开复杂的基因表达问题,帮助理解气候变化。这种程序设计方法也让我们对儿童大脑“计算机”的可能运作方式有了新的认识。

  概率模型结合了两种基本概念。首先,它们用数学方法来描述儿童对人、事物和词语可能作出的各种假设。比如,我们可以把儿童的因果概念描绘成一张事物间的因果关系图,在“按蓝色杠杆”的图标前,画一个箭头指向“玩具鸭子弹出”,来描述这种假设。

  其次,程序可以通过系统分析,把各种假设和不同模式的事件发生的概率联系起来——那些所谓的“模式”,也就是在科学实验和统计分析中出现的“规律”。一种假设与数据越吻合,正确的可能性就越大。我认为,儿童大脑可能也是以相似的机制,把自己对世界万物的各种假设与各类事件的发生概率联系起来。不过,儿童的推理方式非常复杂和微妙,简单的关联或规则很难解释清楚。

  此外,当儿童下意识地使用贝叶斯统计分析法考虑非常规的可能事件时,他们可能比成年人更有优势。在一项研究中,我和同事向一些4岁儿童和成年人展示了一台“blicket 检测器”,只是它的运行方式与此前的检测器有所不同:要把两个物块同时放上去才能启动。4岁儿童比成年人更容易领会这个不同以往的因果关系。成年人似乎更依赖以往的知识和经验,认为检测器通常不会以这种方式运行,哪怕证据已经暗示他们,面前的这台检测器与以往不同。这项研究将会在今年的一个会议上正式公开。

  我们在近期开展的另一个实验中发现,如果幼儿认为有人在指导自己,就会改变统计分析的方法,可能导致创造力下降。研究人员给4岁儿童拿了一个玩具,只有按正确顺序进行操作(比如先拉一下把柄,再捏一下上面的小球),玩具才会播放音乐。研究人员先对部分孩子说:“我也不知道怎么玩,我们一起试试看。”然后,她尝试了多次操作,故意在每次操作中加入一些多余动作,只不过有些操作的最后几步的顺序是正确的,玩具会播放音乐,而有些操作则不正确。当研究人员让孩子自己操作玩具,很多孩子都能根据他们观察到的统计规律,排除多余动作,提炼出准确而简短的操作步骤。

  对于其余孩子,研究人员则说要教他们玩玩具,让他们知道哪些操作能使玩具播放音乐,哪些又不能。然后,她用玩具进行示范,方式和上次一样。当孩子们自己玩玩具时,没人尝试简短有效的操作步骤,而是照搬研究人员的整套动作。这些孩子没有注意到示范过程中的统计规律吗?也许不是,他们的行为可用一种贝叶斯模型来准确描述,而这种模型中有这样一条假设:“老师”教给他们的就是最有效的操作方法。简单来讲,如果这位老师知道更简短的操作步骤,她在演示时是不会夹杂多余动作的。 我们的童年为什么这么长?

  如果大脑是由进化设计的电脑,我们还想知道,婴幼儿那异乎寻常的学习能力是怎么进化而来的,背后又有怎样的神经机制?最近的一些生物学观点,和我们在心理学实验中观察到现象非常吻合。

婴儿天生都是科学家

 

我们的童年为什么那么长? [保存到相册]

  从进化的角度看,人类最显著的特征之一就是我们超长的发育期。人类的童年比任何动物都长很多。为什么婴儿在这么长的时间内都无法自立,需要成年人耗费那么多精力来抚养?

  纵观动物界,智力越高,适应性越强的动物,幼仔的发育期就越长。“早熟”动物,如鸡类,为了适应环境生存需要,往往进化出高度特化的本能,因此幼体成熟很快。而“晚成”动物(指后代需要父母哺育照顾一段时间的动物) 则需要向父母学习生存技巧。比如,乌鸦可利用一种新东西(比如一截电线),想办法把它做成一种工具,但小乌鸦依赖父母的时间远长于鸡类。

  学习策略能赋予动物很大的生存优势,但在没学会各种生存技能之前往往不能自保。为了化解这个矛盾,进化为成年和幼年动物分配了不同的任务:在父母的保护下,幼仔只须学习如何生存,熟悉周围环境,无须做其他事。成年后,动物就可以用它们学到的知识,更好地生存和繁衍,哺育下一代。从本质上说,婴儿就是为了学习而生的。

  这种学习能力的大脑机制,也在神经科学家的努力下逐渐浮出水面。相对于成年人,婴儿大脑的可塑性更强,神经元间的连接更多,而且没有哪个神经连接的使用频率特别高。但随着年龄增大,没用过的连接会逐渐消失,有用的则会不断增强。婴儿脑中还有很多高浓度的化学物质,能轻易改变神经元间的连接。

  前额叶皮层是人类特有的脑区,发育时间极长。在成年人中,这一区域负责集中注意力、制定计划、控制行为等高级功能,这些能力的高低取决于童年时期长期学习的效果。到25岁左右,这一脑区可能才基本发育成熟。

  婴幼儿的前额叶没有发育成熟,缺乏控制力看似一大缺陷,但对学习大有裨益。前额叶会抑制不恰当的思维和行为,没有了这层束缚,婴幼儿就能自由探索周围事物。不过,一个人不能兼具孩子般的创造性探索和灵活学习的能力,以及成人才具有的高效计划力和执行力,因为高效行动需要大脑具有快速的自动处理能力和高度简洁的神经回路,学习则要求大脑具有可塑性,从本质上说,这两种大脑特征是相互对立的。

  过去十年,科学家对童年和人类本质已有了新的认识。婴幼儿绝不仅仅是未发育完全的人,漫长的童年期是进化的一个“精心安排”,方便儿童去改变和创造、学习和探索,这些人类特有的能力以最纯粹的形式出现在我们的生命早期。我们都曾是不能自立的婴儿,这一点非但没有阻碍人类的进步,反而是我们能够进步的原因。童年,以及对儿童的呵护,这是人性的基点。

2013 / . 01 / . 15

科学家发现宇宙最大结构:星系群延伸40亿光年

科学家发现宇宙最大结构:星系群延伸40亿光年

  艺术示意图:剧烈活动的类星体,这是一类发出强大能量的早期活动星系类型。

  据美国国家地理网站报道,天文学家近期发现了宇宙中最大的结构,其巨大程度甚至让现代宇宙学理论认为其不可能存在。

  根据来自斯隆数字巡天项目的数据,一个国际天文学家小组发现一个创纪录的类星体集群结构,其延伸超过40亿光年。所谓类星体即一类年轻的活动星系。该项研究的第一作者,英国中央兰开夏大学天文学家罗杰·克洛斯(Roger Clowes)表示:“这项发现很大程度上是一个惊喜,因为它着实突破了我们所知晓的宇宙中最大结构的尺度。”相比之下,我们所在的银河系直径不过仅有数十万光年,而银河系所处的上一级结构,即室女星系团,其延伸也仅有数亿光年而已。

  挑战现有理论

  克洛斯表示,天文学家们多年前便已经知道类星体可以形成巨大的集群,延伸超过7亿光年。然而此次所发现的,由73个类星体组成的超级集群延伸超过90亿光年,这一规模让人吃惊。

  天文学家们之所以感到惊愕不已,是因为现有的天体物理学模型似乎限定了宇宙中所存在结构的规模上限是其尺度不应超过12亿光年左右。克洛斯表示:“因此这一发现对我们现有的知识构成挑战,因此我们此次并不是解决了一个问题,而是新发现了一个问题。”

  这一巨大的结构被简单地称作“大型类星体团”(LQG),其发现同时还颠覆了另外一项基本宇宙学原理,那就是当在大尺度上进行观察时,宇宙应当是总体均匀的。克洛斯表示:“这可能意味着我们对于宇宙的数学描述过于简单了,更好的模型或许应当是远比这更加困难和复杂的。”

  揭示早期星系演化奥秘

  本次发现的意义还不仅在于其巨大的规模打破了原有纪录,其本身还将可能有助于开展对类似银河系的星系在演化方面的研究工作。类星体是一类在宇宙尚年轻之时存在的,发出强烈能量的活动星系,它们是宇宙中最明亮,最强大的天体之一。它们代表了一种存在于星系演化早期,然而却十分短暂的阶段。

  一种理论认为类星体的这种规模巨大的结合形式可能是现代宇宙中超星系群的前身,然而这两者之间的真正本质联系目前仍不得而知。吉拉德·威灵格(Gerard Williger)是路易斯维尔大学的一位天文学家,他认为这项研究,作为计算机模拟的主要目标之一,也应当更多地通过望远镜的实际观测进行验证。他说:“这种结构之大超出了我们根据宇宙大爆炸之后的冲击波理论得到的预期。很有可能有某种机制在大尺度上操控着类星体的行为,这可能对早期的宇宙环境产生影响。”(晨风)

2013 / . 01 / . 06

日科学家培育杀癌T细胞:对癌症"痛下杀手"

日科学家培育杀癌T细胞:对癌症"痛下杀手"

  日本科学家首次培育出能够杀死癌细胞的T细胞。图片展示了显微镜下的T细胞

日科学家培育杀癌T细胞:对癌症"痛下杀手"

  成功培育T细胞的日本科学家表示这一研究突破为直接将T细胞注入癌症患者体内,以对抗癌症铺平了道路

  新浪科技讯北京时间1月5日消息,据国外媒体报道,日本科学家首次培育出能够杀死癌细胞的T细胞。他们表示这一研究突破为直接将T细胞注入癌症患者体内,用以对抗癌症铺平了道路。实际上,人体可天然产生T细胞,但数量较少。成功培育T细胞让将这种细胞大量注入患者体内,以增强免疫系统成为一种可能。

  日本理化学研究所过敏反应与免疫学研究中心的科学家表示,他们首次成功培育出能够杀死癌细胞的免疫系统细胞T淋巴细胞。为了培育这种细胞,他们首先对专门杀死一种确定癌细胞的T淋巴细胞进行“再编程”,使其变成另一种细胞,被称之为“诱导性多功能干细胞”,诱导性多功能干细胞随后发育成功能齐备的T淋巴细胞。诱导性多功能干细胞发育而成的T淋巴细胞未来可充当一种潜在的癌症治疗手段。

  此前进行的研究发现借助传统手段在实验室培育的T淋巴细胞在杀死癌细胞时效率较低,主要原因在于它们的寿命较短,限制了它们充当一种癌症治疗手段的可能性。为了解决这个问题,由川本浩率领的日本研究人员将成熟的人体T淋巴细胞进行再编程,使其变成诱导性多功能干细胞,而后对这些细胞如何分化进行研究。

  日本科学家将专门对抗一种皮肤癌的T淋巴细胞培育成诱导性多功能干细胞,方式是将这种淋巴细胞暴露在“山中因子”环境下。山中因子是一组化合物,能够让细胞退回到“非专业性”阶段。在实验室,研究人员将诱导性多功能干细胞变成T淋巴细胞。与最初的T淋巴细胞一样,此时的T淋巴细胞也专功同样的皮肤癌。它们的基因构成与最初的T淋巴细胞相同,能够表达癌症特异性受体。研究发现这种新型T淋巴细胞非常活跃,可以产生一种抗癌化合物。

  川本浩博士表示:“我们成功培育出具有特定抗原的T细胞,方式是培育诱导性多功能干细胞,而后让它们变成功能性T细胞。下一步工作是研究这些T细胞到底是具有选择性地杀死癌细胞还是连同其他细胞一起杀死。如果选择性杀死癌细胞,这些T细胞便可直接注入患者体内,用于对抗癌症。在不太遥远的将来,我们便可为癌症患者实施这种疗法。”研究发现刊登在《干细胞》杂志上。

  伦敦国王学院干细胞学高级讲师杜斯克-伊利克博士表示:“这项研究采用一种新奇而有趣的方式研发基于细胞的疗法,这种研究并不是我们经常能够听说的。这种方式需要进一步验证,还需进行大量研究,而后才考虑进行临床测试。不过,当前获得的初步数据令人鼓舞。这项具有开拓性的研究打下了一个坚实基础,让我们进一步加深了对细胞疗法和个性化治疗手段的认知。”(孝文)

 

+
X